new AbstractAugmenter()
All augmenters are following the same pattern
- First create the augmenter
- Then run it
- using
augmenter.readFiles([filename1, filename2, ...])
- using
augmenter.run({images: <images>, points: <points per image>})
- using
- Source:
Examples
// Create one simple augmenter
const augmenter = ia.blur(0.2)
// Augment using filenames
augmenter.read([filename1, filename2, filename3]).then(({images}) => {
console.log(images)
// => 3 images
})
// Run the augmenter 4 times
augmenter.run({images: [img, img, img, img]}).then(({images}) => {
console.log(images)
// => 4 images
})
// follow a point in the augmentation workflow
augmenter.run({images: images, points: [[[25, 90], [12, 32]]]}).then(({images, points}) => {
console.log(points)
// => 2 points
})
Methods
read(runOpts) → {Promise.<AugmenterFormat>}
Augment images and return the result in a pipeable format
Can be used with different input format :
- Using
or array will be considered as images - Full input format is {images:
, boxes: [[[x1, y1, w1, h1]]], points:[[[x1, y1]]] }
Parameters:
Name | Type | Description |
---|---|---|
runOpts |
AugmenterFormat | Images |
- Source:
Returns:
the output is pipeable into other augmenters (format is {images, points, boxes})
- Type
- Promise.<AugmenterFormat>
toGrid(runOpts) → {Promise.<AugmenterFormat>}
Get a grid image
Parameters:
Name | Type | Description |
---|---|---|
runOpts |
AugmenterFormat | String | Array.<String> | Images | {images} |
gridOptions.gridShape |
Array.<Number> |
|
gridOptions.imageShape |
Array.<Number> |
|
- Source:
Returns:
grid a {images} object with only one grid image
- Type
- Promise.<AugmenterFormat>